Search results for "Ultrafast spectroscopy"

showing 7 items of 7 documents

Photocycle of Excitons in Nitrogen-Rich Carbon Nanodots: Implications for Photocatalysis and Photovoltaics

2020

Nitrogen-rich carbon nanodots have emerged as promising nanomaterials for a wide range of applications where a highly emissive and photoactive material with low toxicity and cost-effectiveness is required. One of their hallmarks is indeed a bright, tunable fluorescence of excitonic nature. Disentangling the origin of their optical absorption and fluorescence properties and uncovering relaxation channels and interactions with solvents are some of the most debated issues in the field. Uncovering these aspects is essential for targeted applications, especially in the fields of photocatalysis but also photovoltaics and optoelectronics. Here, we present dedicated transient absorption measurement…

Materials sciencecarbon nanodots carbon nitride surface exciton core exciton photocycle ultrafast spectroscopy exciton emission530 Physicsbusiness.industryExcitonNanotechnologyNanomaterialschemistry.chemical_compoundchemistryPhotovoltaics540 ChemistryUltrafast laser spectroscopyPhotocatalysisGeneral Materials ScienceNanodotbusinessAbsorption (electromagnetic radiation)Carbon nitrideACS Applied Nano Materials
researchProduct

Photodynamics studies of ligand-protected gold nanoclusters by using ultrafast transient infrared spectroscopy

2015

Highly monodisperse samples of three ligand-protected gold nanoclusters Au102(pMBA)44, Au144(SC2H4Ph)60, and a cluster tentatively identified as Au130(pMBA)50, were characterized by UV/vis and infrared spectroscopy, and their photodynamics was studied by transient absorption spectroscopy. The dynamics study for each cluster was performed by electronically exciting the cluster with a pump pulse in the visible or near infrared region and by monitoring the transient absorption of vibrational modes of the ligands with a mid-IR probe pulse. The photodynamics studies were used to determine the molecular or metallic behavior of the cluster, and also to gain important size dependent information abo…

spektroskopiaAu₁₄₄(SR)₆₀transient absorptionliganditelectronic relaxationvibrational spectroscopykultaultrafast spectroscopyAu₁₀₂(pMBA)₄₄gold nanoclusterAu₁₃₀infrapunasäteilynanohiukkasetultraviolettisäteilyviritystilatfemtosecond
researchProduct

Bidentate pyridyl‐NHC ligands: synthesis, ground and excited state properties of their iron(II) complexes and role of the fac/mer isomerism

2021

International audience; Iron complexes are promising candidates for the development of sustainable molecular photoactive materials as an alternative to those based on precious metals such as Ir, Pt or Ru. These compounds possess metal-ligand charge transfer (MLCT) transitions potentially of high interest for energy conversion or photocatalysis applications if the ultrafast deactivation via lower-lying metal-centred (MC) states can be impeded. Following an introduction describing the main design strategies used so far to increase the MLCT lifetimes, we review some of our latest contributions to the field regarding bidentate Fe(II) complexes comprising N-heterocyclic carbene ligands. The disc…

Computational chemistryDenticity010405 organic chemistryChemistryIronBidentate ligands[CHIM.COOR] Chemical Sciences/Coordination chemistry010402 general chemistry01 natural sciencesMedicinal chemistry0104 chemical sciencesInorganic Chemistry[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry[CHIM.THEO] Chemical Sciences/Theoretical and/or physical chemistryExcited state[CHIM.COOR]Chemical Sciences/Coordination chemistryCarbene ligandsUltrafast spectroscopy
researchProduct

Relaxation processes of point defects in vitreous silica from femtosecond to nanoseconds

2008

We studied ultrafast relaxation of localized excited states at Ge-related oxygen deficient centers in silica using femtosecond transient-absorption spectroscopy. The relaxation dynamics exhibits a biexponential decay, which we ascribe to the departure from the Frank-Condon region of the first excited singlet state in 240 fs, followed by cooling in ∼10 ps. At later times, a nonexponential relaxation spanning up to 40 ns occurs, which is fitted with an inhomogeneous distribution of nonradiative relaxation rates, following a chi-square distribution with one degree of freedom. This reveals several analogies with phenomena such as neutron reactions, quantum dot blinking, or intramolecular vibrat…

Physics and Astronomy (miscellaneous)Chemistrypoint defectSilicaNanosecondExcited state (localized; relaxation processes of point defects in vitreous silica from femtosecond to nanoseconds); Excited singlet state; Localized electronic state; Point defects; Vibrational relaxation (relaxation processes of point defects in vitreous silica from femtosecond to nanoseconds); Optical absorption (transient; relaxation processes of point defects in vitreous silica from femtosecond to nanoseconds)Crystallographic defectSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)ultrafast spectroscopyNuclear magnetic resonanceQuantum dotExcited stateFemtosecondVibrational energy relaxationNeutronrelaxation point defect vitreous silica nanosecondPhysics::Chemical PhysicsAtomic physicsSpectroscopyApplied Physics Letters
researchProduct

Brownian reservoir computing realized using geometrically confined skyrmion dynamics

2022

AbstractReservoir computing (RC) has been considered as one of the key computational principles beyond von-Neumann computing. Magnetic skyrmions, topological particle-like spin textures in magnetic films are particularly promising for implementing RC, since they respond strongly nonlinearly to external stimuli and feature inherent multiscale dynamics. However, despite several theoretical proposals that exist for skyrmion reservoir computing, experimental realizations have been elusive until now. Here, we propose and experimentally demonstrate a conceptually new approach to skyrmion RC that leverages the thermally activated diffusive motion of skyrmions. By confining the electrically gated a…

Condensed Matter - Materials ScienceUltrafast Spectroscopy of Correlated MaterialsMultidisciplinary530 PhysicsMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesGeneral Physics and AstronomyGeneral ChemistryCondensed Matter::Mesoscopic Systems and Quantum Hall Effect530 PhysikGeneral Biochemistry Genetics and Molecular Biology
researchProduct

Probing phonon dynamics with multidimensional high harmonic carrier-envelope-phase spectroscopy

2022

We explore pump-probe high harmonic generation (HHG) from monolayer hexagonal-Boron-Nitride, where a terahertz pump excites coherent optical phonons that are subsequently probed by an intense infrared pulse that drives HHG. We find, through state-of-the-art ab-initio calculations, that the structure of the emission spectrum is attenuated by the presence of coherent phonons, and is no longer comprised of discrete harmonic orders, but rather of a continuous emission in the plateau region. The HHG yield strongly oscillates as a function of the pump-probe delay, corresponding to ultrafast changes in the lattice such as bond compression or stretching. We further show that in the regime where the…

Condensed Matter - Materials ScienceMultidisciplinarynonlinear opticsphononsMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesPhysics::OpticsElectron-phonon couplingSettore FIS/03 - Fisica Della Materiaultrafast spectroscopypump-robe spectroscopyPhysics::Atomic and Molecular ClustersHHGOptics (physics.optics)Physics - Optics
researchProduct

Controlling magnetism with light in zero orbital angular momentum antiferromagnet

2023

Antiferromagnetic materials feature intrinsic ultrafast spin dynamics, making them ideal candidates for future magnonic devices operating at THz frequencies. A major focus of current research is the investigation of optical methods for the efficient generation of coherent magnons in antiferromagnetic insulators. In magnetic lattices endowed with orbital angular momentum, spin-orbit coupling enables spin dynamics through the resonant excitation of low-energy electric dipoles such as phonons and orbital resonances which interact with spins. However, in magnetic systems with zero orbital angular momentum, microscopic pathways for the resonant and low-energy optical excitation of coherent spin …

Condensed Matter - Other Condensed MatterCondensed Matter - Materials ScienceUltrafast Spectroscopy of Correlated MaterialsSpectroscopy of Solids and InterfacesQuímica organometàl·licaGeneral Physics and AstronomyMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesCondensed Matter::Strongly Correlated ElectronsMaterialsOther Condensed Matter (cond-mat.other)
researchProduct